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Abstract—at present there is a wide range of evolutionary 
algorithms available to researchers and practitioners. Despite 
the great diversity of these algorithms, virtually all of the
algorithms share one feature: they have been manually designed. 
Can evolutionary algorithms be designed automatically by 
computer? In this paper, a novel evolutionary algorithm based 
on automatically designing of genetic operators is presented to 
address this problem. The resulting algorithm not only explores 
solutions in the problem space, but also automatically generates
genetic operators in the operator space for each generation. In 
order to verify the performance of the proposed algorithm, 
comprehensive experiments on 23 well-known benchmark 
optimization problems are conducted, and the results show that 
the proposed algorithm can outperform standard Differential 
Evolution (DE) algorithm.

Keywords—Evolutionary Algorithm; Automatically Designing; 
Space of Genetic Operators;  

I. INTRODUCTION 

At present there is a wide range of evolutionary algorithms 
available to researchers and practitioners. Despite the great 
diversity of these algorithms, virtually all of the algorithms 
share one feature: they have been manually designed. As a 
result, current evolutionary algorithms inevitably incorporate 
human biases and preconceptions in their designs. 

In recent years, several automatic algorithm design 
techniques were proposed to overcome this limitation. Hyper-
heuristics includes search methods that automatically select 
and combine simpler heuristics, creating a generic heuristic 
that is used to solve more general instances of a given type of 
optimization problem. Hence, hyper-heuristics searches in the 
space of heuristics, instead of in the problem solution space 
[1], raising the level of generality of the solutions produced by 
the hyper-heuristic evolutionary algorithm. Ant Colony 
algorithms are population-based methods widely used in 
combinatorial optimization problems. Jorge Taveres and 
Francisco B. Pereira [2] proposed a grammatical evolution [3] 
approach to automatically design ant colony optimization 
algorithms. The grammar adopted by this framework has the 
ability to guide the learning of novel architectures, by 
rearranging components regularly found on human designed 
variants. Furthermore, Jorge Taveres and Francisco B. Pereira 
[4] proposed a strongly typed genetic programming [5]
approach to automatically evolve the communication 
mechanism that allows ants to cooperatively solve a given 
problem. For these two applications, results obtained with 
several TSP instances show that the evolved pheromone 
update strategies are effective, exhibit a strong generalization 
capability and are competitive with human designed variants. 

For rule induction algorithms, Gisele L. Pappa and Alex A. 
Freitas [6] proposed the use of Grammar-based Genetic 
Programming (GGP) to automatically evolve rule induction 
algorithms. The experiments involving 11 data sets show that 
novel rule induction algorithms can be automatically 
generated using GGP. Mihai Oltean and Grina Grosan [7] 
used Multi Expression Programming (MEP) [8] technique to 
evolve evolutionary algorithm, in which Each MEP 
chromosome encodes multiple EAs. 

Although the aforementioned automatic algorithms have
different emphases on research objectives and contents, one 
thing in common is that they use automatic method to design 
algorithms, which shows that automatic programming method 
can build algorithms to solve problems automatically.  

As the core components of the evolutionary algorithms, 
the genetic operators, such as mutation, combination, etc., are
more variable and complicated compared with other 
components, such as initialization, selection, etc. in the 
algorithm framework. Therefore, more innovation may be 
achieved if we focus on design of genetic operators. This 
paper proposes a novel approach to design genetic operators 
in evolutionary algorithm, namely the evolutionary algorithm 
based on automatically designing of genetic operators 
(EA2DGO), which uses MEP with a new encoding scheme [9] 
to automatically generate genetic operators in the evolutionary 
algorithm to solve problems. Organization of this paper is as 
follows. In Section II, the generic expression of genetic 
operators is introduced. The framework of EA2DGO are
described in Section III. Experimental verifications are given 
in Section IV. The last section gives conclusions. 

II. THE GENERIC EXPRESSION OF GENETIC OPERATORS

It is important to investigate what expressions of genetic 
operators are amenable to automatic design, for which we can 
get inspirations from analyzing a Standard Genetic Algorithm 
(SGA), Particle Swarm Optimization (PSO) [10] and 
Differential Evolution (DE) [11].  

SGA with the real coding usually adopts arithmetic 
crossover as one of the genetic operators. Take total 
arithmetic crossover for example, assume N is a constant 
number which presents the size of the population, and D is the 
dimension of the parameter vector. The population P is then 
expressed as { ( ), 1, 2, , }ip X t i N� � � , t is the generation. 
Select two individuals ( )jX t , ( )kX t from the population 
according to certain rule, where , {1,2, , }� �j k N , j k� . The 

child vector (1) ( )X t and (2) ( )X t could be generated by 
arithmetic operators and expressed as following: 
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where 1 2{ , , , }D� � � �� � and [0,1]l� � , 1, 2, ,l D� � . 
PSO, like other evolutionary algorithms, is also a 

population-based search algorithm and starts with an initial 
population of randomly generated solutions called particles. 
Each particle in PSO has a velocity and a position. The 
velocity d

iV and position d
iX of the dth dimension of the ith 

particle are updated according to the following equations:
1

2

( 1) ( ) * 1 *( ( ) ( ))

* 2 *( ( ))

d d d d d
i i i i i

d d d
i i

V t V t c rand pbest t X t

c rand gbest X t

� � � �

� �
             (3)

( 1) ( ) ( 1)d d d
i i iX t X t V t� � � �                           (4)

Where 1,2, ,i � � is the particle’s index, 
1 1( , , , )D

i i i iX X X X� � is the position of the ith particle; 
1 1( , , , )D

i i i iV V V V� � represents velocity of ith particle. 
1 2( , , , )D

i i i ipbest pbest pbest pbest� � is the vest previous 
position yielding the best fitness value for the ith particle. 

1 2( , , , )Dgbest gbest gbest gbest� � is the best position 
discovered by the whole population. 1d

irand and 2d
irand are 

two random numbers independently generated within the 
range of [0, 1], c1 and c2 are two learning factors reflecting the 
weighting of stochastic accelerations terms that pull each 
particle toward pbest and gbest positions, respectively. 

1, 2,t � � , indicates the iterations.
DE is a population-based, direct, robust and efficient 

search method. Like other evolutionary algorithms, DE starts
with an initial population vector randomly generated in the 
solution space. The main difference between DE and other
evolutionary algorithms, such as SGA and PSO, is its new 
generation vectors generating method. In order to generate a 
new population vectors, three vectors in population are 
randomly selected, and weighted difference of two of them is 
added to the third one. The procedure could be illustrated as 
following: 

Mutation: For each vector i from generation t, a mutant 
vector ( 1)iX t � is defined by 

1 2 3
( 1) ( ) ( ( ) ( ))i r r rX t X t F X t X t� � � �               (5) 

Where {1,2, , }i N� � and 1 2 3, , [0, ]r r r N� , i , 1r , 2r and 3r
are different. 

Through the analysis above, the following observations 
are made: 
i.Genetic operator is a formula which is composed by objects 

(such as ( )jX t and ( )kX t ), arithmetic operators (+,-,*) and 
parameters (such as� , F). 

ii.The formula representing the genetic operator can have 
many variants. For example, DE and PSO have similar but 
different formulas, which is again different from the formula 
of SGA. For the automatically designing of genetic 

operators, the most different characteristic compared with 
traditional genetic operators is that its structure could be 
reconstructed by computer, which means that the genetic 
operators could be generated adaptively according to the 
requirements of problem. 
iii.While existing evolutionary algorithms (including SGA, DE, 
PSO, etc.) have different formulas, they actually share 
significant commonality. An automatic way of generating 
novel formula (using the existing objects, arithmetic 
operators, and parameters) may lead to very novel design of 
evolutionary algorithm which can adapt itself to address 
problems with very dynamic and changing nature.

According to the i, ii and iii, we could design a scheme 
to represent the genetic operator for automatic design. Only 
consider of Eq.(1). Suppose ( ) , ( ) ,k jX t a X t b c�� � � ,
the Eq.(1) could expressed by an expression tree as in Fig.1.

Figure 1. The expression tree of genetic operator Eq.(1) in SGA

In automatic programming, such as GEP (Gene 
Expression Programming)and MEP, an expression tree is a 
phenotype of chromosome, and the phenotype could be 
translated into an equivalent linear genotype. Suppose the 
length of one chromosome is 7, 

{ , , }T a b c� and { , ,*}O � � � , the expression tree in Fig.1 
could be expressed as a genotype as follows.

1 2 3 4 5 6 7
+ a * c - b a

2 3 4 5 6 7

Figure 2. the equivalent genotype of Eq.(1) in SGA

Each gene in the equivalent genotype encodes a terminal 
or a function symbol. A gene that encodes a function includes 
pointers towards the function arguments. Function arguments 
always have indices of higher values than the position of the 
function itself in the chromosome [9]. Phenotype translation is 
obtained by parsing the chromosome right-left. A terminal 
symbol specifies a simple expression. A function symbol 
specifies a complex expression obtained by connecting the 
operands specified by the argument positions with the current 
function symbol. For simplicity, the expression tree expressed 
by the first symbol is represented as the chromosome’s final 
presentation. 

The chromosome could be reconstructed with no 
difficulty. Every gene could be changed into another terminal 
or function symbol, so does the function arguments. When the 
gene or function arguments are changed, the genotype and 
phenotype of chromosome are transformed in the meanwhile.  
If we can design a self-organized framework to adjust the 
structure of chromosome adaptively in the problem solving, 
the genetic operators could be designed automatically.
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III. EVOLUTIONARY ALGORITHM BASED ON 
AUTOMATICALLY DESIGNING OF GENETIC OPERATORS

Single-objective optimization problems are adopted to 
verify the validity of the EA2DGO algorithm. This means that 
the genetic operators represented by above scheme are used to 
manipulate the individuals in the population in the problem 
space, and the goal is to find the problems’ global optimal 
solution. However, in the automatically designing of genetic 
operators, the genetic operators it not predefined by designer 
before problem solving. Actually, the genetic operators is 
searched and designed in the process of problem solving. 
Thus, the framework of the EA2DGO consists two core 
components, one is function optimization unit, which is 
searching in the problem solution space, and, the other one is 
automatically designing genetic operators unit, which is 
searching in the genetic operators’ space.

1. Begin

2. Input: NP, NOP, F, CR, OMR, Max_Fes, h, t, times, T, and O;  

3. G=0

4. Create the function optimization population i
Gx� , i� , 1, ,i NP� �

5. Create the genetic operators population 
�k

Go ,�k , 1, ,� �k NOP
6. ( ) 0�

� i
Gf o ,�k , 1, ,� �k NOP

7. Evaluate ( )�i
Gf x , i� , 1, ,i NP� �

8. ForG=1 to Max_FES Do

9. Find the best
�best

Gx in NP

10. Call Function Optimization unit

11. If( [0,1) 	rand OMR ) Then

12. Call Automatically Designing Genetic Operators unit

13. End If

14. G++ 

15. End For

16. Output 
�best

Gx

17. End

Figure 3. The general framework of EA2DGO

The general framework of EA2DGO is given in Fig.3.
Where NP denotes the size of function optimization 
population; NOP denotes the size of operator generating 
population; F denotes scaling factor; CR denotes the 
probability of crossover; OMR denotes the probability of 
Mutation for operators in operator generating population;
Max_FEs denotes the max number of function calls; h is the 
of head length of chromosome in new encoding scheme MEP; 
t is the tail length; times denotes the number of repeat times 
which randomly select individuals for mutation manipulation 
from population in function optimization unit; T is the 
terminal symbol set; O is the function symbol set.

The function optimization unit focuses on the solving of 
global optimal solution in the problem solution space. The 
framework is given in Fig.4. According to the framework, we 
can see that the function optimization unit is very familiar

with DE, including the population initialization, crossover 
manipulation, individual fitness assessment, individual 
selection, etc. For automatically designing genetic operators,
an individual

�k
Go , [1, ]�k NOP , is selected from the 

population according to the Roulette Wheel Selection, and the 
selected individual will be used in mutation process in the 
function optimization unit. The GeneCalculate function 
focuses on the fitness calculate gene by gene. The input 
includes several individuals selected from function 
optimization population and one individual selected from 
genetic operators’ population. The specific fitness calculation
method could see [11]. After D times GeneCalculate, a new 
candidate , 1�

� i
j Gu is generated finally.

1. Begin

2. Suppose the function optimization population is
i
Gx� , i� , 1, ,i NP� �

3. Suppose the genetic operators population is 
�k

Go ,�k , 1, ,� �k NOP

4. For i=1 to NP Do

5. Select randomly 1 2 3r r r i� � � , 1 2 3, , [1, ]�r r r NP : 

6. Select 
�k

Go , [1, ]�k NOP by Roulette Wheel Selection 

7. randj =randint(1,D)

8. For j=1 to D Do

9.       If( [0,1) 	jrand CR or � randj j ) Then

10. , 1 ,� � �
�i i

j G j Gu x GeneCalculate( 1
,
�r

j Gx , 2
,
�r

j Gx , 3
,
�r

j Gx , ,
�best

j Gx ,
�k

Go )

11. Else

12. , 1 ,� �
� �i i

j G j Gu x
13. End If

14. End For  

15. If (better( , 1�
� i

j Gu ,
� i

j Gx )) Then

16. 1 1� ��
� �i i

G Gx u
17. ( ) � ��k

Gf o
18.      Else

19. 1� �
� �i i

G Gx x
20. End If

21. End For

22. End

Figure 4. The framework of Function Optimization

In automatically designing genetic operators unit, the 
most important work is the manipulation and evolution of the 
genetic operators. Suppose the individual before genetic 
manipulation is

�k
Go , and the new generated individual after

genetic manipulation is 
� k
Go ). A proposed way to assess the 

candidate 
� k
Go in this paper is: within a certain times, we 

repeatedly select individuals from population in function 
optimization unit, then generate new candidates r

Gu� and r
G�
�
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by
�k

Go and 
� k
Go respectively. Counting the times that the 

fitness of child better than its parent r
Gx� , donate by ( )�k

GST o
and ( )
� k

GST o respectively. If ( )�k
GST o < ( )
� k

GST o , we think 

that the candidate 
� k
Go is better than

�k
Go , and 

�k
Go is replaced 

by 
� k
Go . The most disadvantage of this method is that, 

although this method can effectively assess the individual 
before and after genetic manipulation, it cost more computing 
resources. 

The general framework of automatically designing 
genetic operators unit is given in Fig.5.

1. Begin
2. Input: �k

Go = 1, ,{ , , }� ��k k
G m Go o , [1, ]�k NOP ;

3. Select randomly t , [1, ]�t m : 

4. Select a new operator to 
,
�k

t Go which will generate a new chromosome k
Go
�

5. For i=1 to times Do
6. Select randomly 1 2 3r r r r� � � , 1 2 3, , , [1, ]r r r r NP� : 

7. randj =randint(1,D)
8. For j=1 to D Do
9. If( [0,1) 	jrand CR or � randj j ) Then

10. , ,
r r
j G j Gu x� �
� �

GeneCalculate( 1
,
�r

j Gx , 2
,
�r

j Gx , 3
,
�r

j Gx ,
,
�best

j Gx , �k
Go )

11. , ,
r r
j G j Gx� � �
� �

GeneCalculate( 1
,
�r

j Gx , 2
,
�r

j Gx , 3
,
�r

j Gx , ,
�best

j Gx , k
Go
� )

12. Else

13. , , ,
r r r
j G j G j Gu x�� �

�� �

14. End If
15. End For    
16. If (better( ,r r

G Gu x� �
)) Then

17. ( ) � ��k
GST o

18. End If
19. If (better( ,r r

G Gx�� � )) Then

20. ( )k
GST o
 � �
�

21. End If
22. End For
22. If ( ( )�k

GST o > ( )k
GST o
� ) Then

24. 
1

k
Go �

� =
�k

Go
25. Else
26. 1

k
Go �

�
= k

Go
�

27. End If
28. End

Figure 5. The framework of automatically designing genetic operators unit

IV. EXPERIMENTAL VERIFICATION

For experiment verification, 23 benchmark functions,
which are well-known and frequently used, are selected from 
the [13]. In order to verify the effectiveness and efficiency of 
EA2DGO algorithm, we carry out experiment based on these
23 benchmark functions.

In our experiment, we set NP=100, F=0.7, CR=0.8,
OMR=0.15, Max_FEs=250000, for new encoding scheme 
MEP in automatically designing genetic operators unit, 

NOP=5, h=5, t=6, L=11, times =50, { , , , , }�T a b c d F (a

is 1
,
�r

j Gx , b is 2
,
�r

j Gx , c is 3
,
�r

j Gx , d is ,
�best

j Gx  ) and { , ,*}O � � � . In 
order to verify the performance of the proposed algorithm, 
Standard DE algorithm is conducted. In DE algorithm,
NP=100, F=0.7, CR=0.8, Max_FEs=250000. The obtained 
results are presented in Table 2. Simulation is carried out in 
Eclipse and run on an AMD laptop with 2G RAM under 
Windows XP platform. For each test problem, 25 independent 
runs were conducted with different random initialization.  

The results on functions F1 to F23 are summarized in 
Table I. For functions F1-F5, F7, F9-F11, the EA2DGO 
achieved better than DE. For functions F6, F12-F14, F16-F23, 
all two algorithms obtain the exactly same result. DE 
achieved the best in function F8 and F15. In F15, while the 
result of the EA2DGO closes to DE, and both algorithms have 
the ability to get best solution. The most difference from the 
results is the function F8, in which DE can easily obtain the 
global minima but, the new algorithm presented in this paper 
easily falls into the local minima. 

The convergence comparisons between the EA2DGO and 
DE are shown in Fig.7. For simplicity, each Figure shows the 
result of a random trial. Because of space limitation, just some 
samples (F2, F4, F7 and F9) are selected and presented. 
According to Fig.7, we can find that EA2DGO can converge
to a better optimal solution quickly than DE in every trail. 

                          F2                                                              F4

                             F7                                                              F9
Figure 6. Convergence curves of the automation of EA for single objective 
optimization algorithm and DE for partial test functions. X axis represents 

number of function calls and Y axis represents the best fitness.

V. CONCLUSION

A novel evolutionary algorithm based on automatically 
designing of genetic operators is presented to tentatively solve 
algorithm designed automatically problem. EA2DGO is not 
only searching in the problem solution space, but also 
searching in the space of genetic operators, which means the 
genetic operators it not predefined by designer before problem 
solving, but searched and designed automatically in the 
process of problem solving. For future work, the validity
analysis for EA2DGO should be carried out urgently. 
Moreover, parameters in presented algorithm are not analyzed.
Further research could focus on the parameters researching 
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and the adaptations of parameters’ settings during the 
evolving procedure. 
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TABLE I. THE RESULTS ACHIEVED FOR F1 TO F23 USING EA2DGO FOR SINGLE OBJECTIVE OPTIMIZATION ALGORITHM AND DE ALGORITHM

EA2DGO DE
Best Median Worst Mean Std Best Median Worst Mean Std

F1 0.0 0.0 0.0 0.0 0.0 2.38E-90 7.58 E-89 3.90E-88 1.07 E-88 9.22E-89 

F2 0.0 0.0 0.0 0.0 0.0 3.07E-52 1.0E-51 6.34E-51 1.36 E-51 1.17E-51 

F3 0.0 0.0 0.0 0.0 0.0 9.84E-87 1.8 E-85 6.8 E-85 2.23 E-85 1.7 E-85

F4 0.0 0.0 0.0 0.0 0.0 1.349 9.494 13.075 8.293 2.836 

F5 0.0 22.117 29.0 13.001 10.839 1.810 18.356 71.343 23.886 14.486 

F6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

F7 3.74E-5 8.61 E-5 1.78 E-3 8.82E-4 4.26E-4 2.1E-3 3.3E-3 4.76E-3 3.3 E-3 5.81E-4 

F8 -12569.487 -11858.856 -5897.496 -10864.79 1755.355 -12569.487 -12451.048 -12095.733 -12419.463 118.28 

F9 0.0 0.0 0.0 0.0 0.0 0.0 1.99 6.96 2.12 1.32 

F10 4.441 E-16 4.441 E-16 4.441 E-16 4.441 E-16 0.0 4.0E-15 7.55E-15 7.55E-15 5.89E-15 1.37E-15 

F11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.4E-3 4.93E-4 1.43E-3 

F12 1.571 E-32 1.571 E-32 1.571 E-32 1.571 E-32 0.0 1.571 E-32 1.571 E-32 1.571 E-32 1.571 E-32 0.0 

F13 1.35 E-32 1.35 E-32 1.35 E-32 1.35 E-32 0.0 1.35 E-32 1.35 E-32 1.35 E-32 1.35 E-32 0.0 

F14 0.998 0.998 0.998 0.998 3.2E-8 0.998 0.998 0.998 0.998 8.6E-17 

F15 3.075 E-4 3.075 E-4 1.791 E-3 4.496 E-4 1.024 E-4 3.075 E-4 3.075 E-4 1.22E-3 3.69E-4 1.77E-4 

F16 -1.03163 -1.03163 -1.03163 -1.03163 0.0 -1.03163 -1.03163 -1.03163 -1.03163 0.0 

F17 0.398 0.398 0.398 0.398 1.715 E-4 0.398 0.398 0.398 0.398 0.0 

F18 3 3 3 3 2.045E-14 3 3 3 3 6.88E-16 

F19 -3.86 -3.86 -3.86 -3.86 2.66E-9 -3.86 -3.86 -3.86 -3.86 9.25E-13 

F20 -3.32 -3.32 -3.32 -3.32 4.79E-7 -3.32 -3.32 -3.32 -3.32 6.27E-12 

F21 -10.153 -10.153 -10.153 -10.153 1.01E-9 -10.153 -10.153 -10.153 -10.153 1.38E-15 

F22 -10.403 -10.403 -10.403 -10.403 2.59E-9 -10.403 -10.403 -10.403 -10.403 1.38E-15 

F23 -10.536 -10.536 -10.536 -10.536 1.03E-9 -10.536 -10.536 -10.536 -10.536 1.85E-15 
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